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Abstract

An approximate Riemann solver of Godunov type for ideal relativistic magnetohydrodynamic equations (RMHD)
named as HLLC (‘‘C’’ denotes contact) is developed. In HLLC the Riemann fan is approximated by two intermediate
states, which are separated by the entropy wave. Numerical tests show that HLLC resolves contact discontinuity more
accurately than the Harten-Lax-van Leer (HLL) method and an isolated contact discontinuity exactly.
� 2006 Elsevier Inc. All rights reserved.
1. Introduction

Since the complexity of the special relativistic ideal magnetohydrodynamics (RMHD), numerical simula-
tions are usually the only means to study the rich structure of their solutions. The RMHD has been made
use of in many astrophysical phenomena, for instance those involving relativistic jets, which have been
recently started to study by numerical simulations [12].

There are several requirements for the numerical simulation in general such as accuracy, robustness and
computational efficiency and several different approaches has been developed in order to fulfill them in the
most successful way. The approximate Riemann solvers of Godunov type have proven to be applicable in
MHD and RMHD simulations. Among them is the HLL solver and the HLLC solver [7,6,3,11]. The latter
has recently been applied successfully to RHD and RMHD even including higher order multidimensional
cases [13,14].

Our goal is to find a conservative and positive solver with minimum diffusion which would still be fast
enough. Positivity means that the solver maintains the condition q P 0, p P 0. One way to achieve these
goals, which is followed here, is to add gradually intermediate states to HLL which has one intermediate state
[15]. In this paper, a HLLC solver containing two intermediate states is introduced for RMHD equations and
it is shown by numerical examples that it resolves contact wave more accurately than the HLL method. The
scheme presented here differs from [14] and the differences will be discussed in Section 4.
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2. Theory

2.1. RMHD equations

The ideal special relativistic magnetohydrodynamical equations (RMHD) [1,5,8] are

the conservation of mass
o

oxa
ðquaÞ ¼ 0; ð1Þ

the conservation of energy–momentum

o

oxa
T ab

FL þ T ab
EM

� �
¼ 0; ð2Þ

the Maxwell equations

o

oxa
uabb � baub
� �

¼ 0; ð3Þ

together with the state equation in the form e = e(p,q). We are using the c-law equation of state
e ¼ qc2 þ p=ðc� 1Þ: ð4Þ

Greek indices range over 0, 1, 2, 3 and Latin indices over 1, 2, 3, where 0 is indicating the time component and
1, 2, 3 the space components. In the equations xa = (ct,xj) is the four vector of space–time coordinates,
C = (1 � v2/c2)�1/2 is the Lorentz factor, ua = (Cc,Cvj) is the four velocity, c is the polytropic (adiabatic) index
and
ba ¼ ðCð~v=c �~BÞ; Bj=Cþ Cð~v=c �~BÞvj=cÞ ð5Þ

is the magnetic induction four vector. The energy–momentum tensor for relativistic ideal fluid is
T ab
FL ¼ ðeþ pÞuaub=c2 þ pgab; ð6Þ
where gab = diag(�1,1,1,1) is the Minkowski metric tensor. The electromagnetic energy–momentum tensor is
T ab
EM ¼ �0F a

cF bc � �0

4
gabF cdF cd; ð7Þ
where Fab is the electromagnetic field tensor, which in the ideal infinite conductivity approximation ~E ¼ ~B�~v
becomes
F ab ¼ �cdabbcub; ð8Þ

where � is the Levi-Civita permutation symbol. RMHD equations written out explicitly in the usual 1 + 3 con-
servative form are
oU
ot
þ
X3

i¼1

oF iðUÞ
oxi

¼ 0; ð9Þ

U �

D
~k

E
~B

0
BBB@

1
CCCA ¼

Cq

C2ðeþ pÞ~v=c2 þ~S=c2

C2ðeþ pÞ � p þ eA

~B

0
BBB@

1
CCCA; ð10Þ

F i ¼

Cqvi

C2

c2 ðeþ pÞvi~vþ p
P3
j¼1

dij~ej þ~P A
i

C2ðeþ pÞvi þ~S
vi
~B� Bi~v;

0
BBBBBB@

1
CCCCCCA

ð11Þ
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where
~S ¼ 1

l0

ð~E�~BÞ; ð12Þ

~E ¼ ~B�~v; ð13Þ

eA ¼ 1

2l0

B2 þ 1

c2
E2

� �
; ð14Þ

~P A
i ¼ eA

X3

j¼1

dij~ej �
1

l0

Bi
~B� 1

l0c2
Ei
~E: ð15Þ
Here U ¼ ðD;~k;E;~BÞ is the 8-vector of conserved variables mass-, momentum- and energy density and mag-
netic field and Fi is the 8-vector of corresponding fluxes. We introduce also the vector of primitive variables
W ¼ ðq;~v; p;~BÞ where q is mass density,~v velocity and p pressure. The numerical discretization below uses the
RMHD equations in the form (9).
2.2. Numerical method

RMHD equations like MHD have seven eigenvalues which correspond to entropy wave, two Alfvén
waves and four (slow/fast) magnetosonic waves. A solution of the Riemann problem may include
shock-, rarefaction-, compound- and overcompressible shock waves. Let us consider the one-dimensional
case from now on (F ” Fx). The numerical solution of the Riemann problem can be written in conservative
form
Unþ1
i ¼ U n

i �
Dt
Dx
ðF numðU n

i ;U
n
iþ1Þ � F numðU n

i�1;U
n
i ÞÞ; ð16Þ
where Fnum is the numerical flux function, n refer to time step and i to cell number [10]. Note that the flux Fi is
given in (11) as a function of primitive variables: U = m(W) where m is the mapping defined by (10). That
means that the inverse map U ´ m�1(U) = W should be determined, because the time stepping process
(16) produces next time level for the conservative variables not the primitive ones. The detailed description
of the inverse mapping is given in [5]. Here we repeat some of the key points. The primitive variables can
be written
q ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
; p ¼ ðð1� v2=c2ÞHc2 � qc2Þ=c1;

~v ¼ 1

H þ �0B2
ð~k þ ð~k �~BÞ�0

~B=HÞ;
ð17Þ
where H = C2(q + c1p/c2) and c1 = c/(c � 1). In (17) the primitive variables are functions of U, v2 and H and
thus we require two more equations to express v2 and H in terms of U. These are obtained from the energy and
momentum density definitions (10). The momentum squared is
H 2v2 þ ð2H þ �0B2Þð�0B2v2 � ð~k �~BÞ2=H 2Þ=ðH þ �0B2Þ2 � k2 ¼ 0 ð18Þ

and the equation for the energy density can be put into the form
1� 1� v2=c2

c1

� �
Hc2 � E þ Dc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
=c1 þ

B2

l0

� �
ðH þ �B2Þ2 þ �0ðB2k2 � ð~k � BÞ2Þ=2 ¼ 0; ð19Þ
The Eq. (19) is a third order polynomial equation for H so it can be solved analytically. It appears that all the
roots are real and the correct one is the largest one. The root is substituted in (18) and we get equations of the
form
FðfÞ ¼ 0;
dFðfÞ

df
¼KðfÞ; f � v2; ð20Þ
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from which v2 is solved numerically by Newton’s method. Therefore we know both v2 and H as a function of
conservative variables and the primitive variables as functions of the conservative variables can be solved from
(17). Thus the inverse mapping U ´ m�1(U) = W has been determined.

In a two-state approximate Riemann solver (HLLC) [7,6] the Riemann fan is approximated by two inter-
mediate states U �L;R, which are separated by the line dx/dt = SM, where SM is the eigenvalue of the entropy
wave in RMHD. The numerical flux function becomes
F num � F HLLC ¼

F L; SL > 0;

F �L; SL 6 0 6 SM ;

F �R; SM 6 0 6 SR;

F R SR < 0;

8>>><
>>>:

ð21Þ
where SL,R are the minimum and maximum signal speeds in the system, which in ideal RMHD are the speeds
of magnetosonic waves k1,7 (k1 < k7). They can be solved analytically from the quartic equation
ð1� �2Þðu0k� uxÞ4 þ ð1� k2Þðc2
s ð~b0k� ~bxÞ2 � �2ðu0k� uxÞ2Þ ¼ 0; ð22Þ
where cs = (cp/w)1/2 is the sound speed, ~ba ¼ ba=ðwtotÞ1=2
;wtot ¼ wþ baba and w = e + p is the enthalpy. After

k1,7 are solved from (22) the speeds SL,R are calculated in the numerical code as in [4]
SL ¼ minðk1ðU LÞ; k1ðU RÞÞ; SR ¼ maxðk7ðULÞ; k7ðURÞÞ: ð23Þ

Another possibility is to define SL = �c, SR = c, but this adds diffusion to the solution.

Now we need to define the fluxes F �L;R. The integral form of the conservative Eq. (9) is
Z x2

x1

Uðx; t2Þdx�
Z x2

x1

Uðx; t1Þdxþ
Z t2

t1

F ðUðx2; tÞÞdt �
Z t2

t1

F ðUðx1; tÞÞdt ¼ 0: ð24Þ
By choosing different values for (x1,2,t1,2) the Rankine-Hugoniot jump conditions across the SL, SM and SR

waves are derived
SaðU �a � U aÞ ¼ F �a � F a; a ¼ L;R; ð25Þ
SMðU �R � U �LÞ ¼ F �R � F �L: ð26Þ
It would seem natural to define F �a � F ðU �aÞ, but then the flux would not be consistent with the conservation
law over the rectangle ði� 1

2
; iÞ � ð0;DtÞ [3].

(i)Bx 6¼ 0 We use the knowledge that the jump condition over the entropy wave SM (26) leads to the follow-
ing relations when Bx 6¼ 0 [1,8]
q�L 6¼ q�R; v�iL ¼ v�iR; p�L ¼ p�R; B�iL ¼ B�iR; i ¼ x; y; z: ð27Þ

Let us construct a two-state solver [6] so that the intermediate states partly correspond to the single-state HLL
fluxes in order to satisfy (27). First we define SM ¼ v�xa ¼ v�x (a = L,R) as it was also done in [16,3,15,6] and
furthermore
v�ia ¼ v�i ; ð28Þ
p�a ¼ p�; ð29Þ
B�ia ¼ B�i ; i ¼ x; y; z: ð30Þ
From (26), (28) it follows
q�a ¼
CqaðSa � vxaÞ
C�ðSa � SMÞ

; C� � ð1� v�2=c2Þ�1=2
: ð31Þ
The primitive 1-state HLL variables p�; v�i ;B
�
i are obtained from
W � ¼ m�1ðU �Þ; ð32Þ
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where
U � ¼ SRUR � SLU L � F R þ F L

SR � SL
ð33Þ
are HLL averages. Now the intermediate two-state primitive variables W �
a are defined according to (28)–(33)

and further intermediate two-state conservative variables by U �a ¼ mðW �
aÞ. Thus the intermediate two state

fluxes F �a can be calculated from (25), (28)–(33) and the time step from (16) and (21). The mapping m�1 is also
needed in calculating the values for the fluxes FL,R, because they are given as functions of the primitive vari-
ables W in (11) and the time-stepping is done for conservative variables U. Formally this can be written as
F(W)L,R = F(m�1(U))L,R.
(ii)Bx = 0 In the case of Bx = 0 the jump conditions over the SM wave [1,9] yield
v�xa ¼ v�x ; p�L þ
b�L

2

2l0

¼ p�R þ
b�R

2

2l0

; a ¼ L;R; ð34Þ
where b�a
2 ¼ B�a

2ð1� ðv
�
a
c Þ

2Þ þ ð~v
�
a
c �~B�aÞ

2. Now we assume identically to the Bx 6¼ 0 case that SM ¼ v�xa ¼ v�x and
similarly
p�a þ
b�a

2

2l0

¼ p� þ b�2

2l0

� p�tot; ð35Þ
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Fig. 1. Test 0a, HLL and HLLC.
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Fig. 2. Test 0b, HLL and HLLC.
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where p*, b* are obtained from the HLL average states. From the jump conditions over the Sa waves (25) it
follows that
v�y;za ¼ ðCy;zaðSaky;za � F ky;z
a Þ � CaðSakz;ya � F kz;y

a ÞÞ=ðCyCz � C2
aÞ;

q�a ¼
Caqa

C�a

ðSa � vxaÞ
ðSa � SMÞ

; E�a ¼
SaEa � kxa þ p�totSM

Sa � SM
;

B�y;za ¼ By;za
ðSa � vxaÞ
ðSa � SMÞ

;

where
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Fig. 3. Test 1, HLL.
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Ca ¼ ðSM � SaÞ
B�yaB�za
l0c�

; Cy;za ¼ ðSa � SMÞ Ga þ
B�2y;za

l0c2

 !
;

Ga ¼ ðSaEa � F E
a þ Sap�totÞ=ðc2ðSa � SMÞÞ �

B�2a

l0c2
;

ð36Þ
where F E
a ; F

ky;z
a refer to the energy and momentum parts of the flux function (11), respectively. The momentum

densities of the intermediate states are obtained from the definitions k�ia ¼ ðE�a þ p�totÞv�i � 1
l0c� B�i~v

� �~B�. The rest
of the implementation details follow the Bx 6¼ 0 case.
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3. Numerical tests

A few numerical test problems for RMHD are described in [2,5]. Three of them are performed here with the
same numerical and physical parameters. The number of gridpoints is 1600 and the final time is 0.4. The poly-
tropic index is c = 5/3, the constants l0, �0 are normalized to unity and therefore also c. We present here
results for the tests 1, 2 and 4 in [2,5] (here they are numbered 1, 2, 3) and three other tests. Tests are performed
for both 1-state HLL and 2-state HLLC solvers.
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Test 0a (Fig. 1) is defined by the initial state at time t = 0 as
W ¼ ðq; vx; vy ; vz; p;Bx;By ;BzÞ ¼
ð1; 0; 0:4; 0; 1; 1; 1; 0Þ for x < xh

ð0:125; 0; 0:4; 0; 1; 1; 1; 0Þ for x > xh;

�

where xh is the middle point of the grid.
Test 0b (Fig. 2):
W ðt ¼ 0Þ ¼
ð1; 0:2; 0; 0; 1; 1; 1; 0Þ for x < xh

ð0:125; 0:2; 0; 0; 1; 1; 1; 0Þ for x > xh;

�

These two tests represent an isolated contact discontinuity where there is a jump only in rest mass density q.
Only the rest mass density q profiles are plotted because the other primitive variables are constant. The results
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show that HLLC resolves an isolated discontinuity exactly when vx = 0 i.e. in a coordinate system where the
contact discontinuity is at rest. The difference between HLL and HLLC becomes smaller when vx approaches
to c = 1.

Test 1 (Figs. 3 and 4):
W ðt ¼ 0Þ ¼
ð1; 0; 0; 0; 1; 0:5; 1; 0Þ for x < xh

ð0:125; 0; 0; 0; 0:1; 0:5;�1; 0Þ for x > xh;

�

This test shows clearly that the contact discontinuity, located approximately at x = 0.6, is resolved more accu-
rately by the HLLC than the HLL solver.
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Test 2 (Figs. 5 and 6):
W ðt ¼ 0Þ ¼
ð1; 0; 0; 0; 30; 5; 6; 6Þ for x < xh

ð1; 0; 0; 0; 1; 5; 0:7; 0:7Þ for x > xh;

�

In this test there is a contact discontinuity approximately at x = 0.78. The HLLC solver resolves it more accu-
rately than the HLL solver, but the difference is small.

Test 3 (Figs. 7 and 8):
W ðt ¼ 0Þ ¼
ð1; 0:999; 0; 0; 0:1; 10; 7; 7Þ for x < xh

ð1;�0:999; 0; 0; 0:1; 10;�7;�7Þ for x > xh;

�
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Fig. 8. Test 3, HLLC.



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ρ

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

vx

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

p

-1.5

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

B
y
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Two ultra relativistic streams collide producing a lower dip in the rest mass density profile at x = 0.5. The
HLLC solver captures this feature better than the HLL solver.

The tests 1, 2, 3 show that HLLC method restores the contact discontinuity in the mass density calcula-
tions. The difference between HLL and HLLC in resolving the other primitive variables is negligible.

Test 1b (Figs. 9 and 10):
W ðt ¼ 0Þ ¼
ð1; 0; 0; 0; 1; 0; 1; 0Þ for x < xh

ð0:125; 0; 0; 0; 0:1; 0;�1; 0Þ for x > xh;

�

From the results of the test 1b it can be seen that in the Bx = 0 case the HLLC solver resolves the contact
discontinuity, located at x = 0.58, more sharply than the HLL solver in mass density, pressure and magnetic
field (vy, z are constants in this test).
4. Summary and conclusions

In this paper we have started successfully our program of developing a robust (positive) solver for RMHD
equations by gradually adding intermediate states to HLL [15]: a solver for RMHD with two intermediate
states, HLLC, has been developed. It has been shown by numerical tests that the HLLC has the benefit of
realizing the contact discontinuity more accurately than HLL and in particular HLLC resolves an isolated
contact discontinuity exactly. In several tests positivity has always been maintained. Numerical tests show that
the scheme corresponds to the HLLC for MHD in the limit v/c! 0 provided that the variable range is such
that the magnetosonic wave speeds according to MHD are below the speed of light. This is the case when the
classical sound speed and Alfvén speed are below the speed of light.



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ρ

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

vx

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

p

-1.5

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

B
y

Fig. 10. Test 1b, HLLC.
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There are some essential differences between our scheme and the HLLC scheme developed in [14]. The
speed of the entropy wave SM � v�x and the pressure of the intermediate state in the Bx 6¼ 0 p* are defined dif-
ferently. We have SM = vx(U*) and p* = p(U*). In [14] SM,p* are considered as auxiliary variables and they are
solved from the consistency conditions. Also the definitions of the transverse velocity components v�y ; v

�
z are

different. Especially we have not found any problems that v�y ; v
�
z would become ill-defined when Bx! 0 which

was observed by [14] in their scheme. In the scheme by [14] there is a problem with the definitions of the inter-
mediate transverse velocities v�y ; v

�
z , which can become arbitrarily large when Bx! 0. This leads in certain cir-

cumstances to the situation where the positivity is lost. We have not encountered those problems and v�y ; v
�
z

remain well defined by construction because they are formed from the HLL averages.
The HLLC solver for RMHD could be applied to astrophysical phenomena such as relativistic jets. In

future work we intend to increase intermediate states in order to improve the accuracy of resolving the other
existing discontinuities.
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